USC

What Can Transformers Learn In-Context?
A Case Study of Simple Function Classes

CSCI-699: Computational Perspectives on the Frontiers of Machine Learning
Paper by Ekin et al. (NeurIPS 2022 oral)
Presenter: Jingmin Wei. Apr 3, 2023

Outline

- In-context Learning

- Experiment Settings

- In-context Learning of Linear Functions

- Extrapolating Beyond the Training Distribution (Shift)

- In-context Learning of More Complex Function Classes
- Investigating Key Factors for In-context Learning

- Conclusions

USC

In-context Learning

USC

In-context Learning

ICL for sentiment analysis. Inference with prompts, without

parameter updates.
Delicious food -> 1, The food is awful -> 0, Terrible dishes -> 0, Good meal -> ?

"Good meal" can be considered as 1in a sentiment analysis context, as it is generally a

positive statement about the food.

English translations of French words after
being prompted on a few such translations. Many LLMs exhibit ability to perform

in-context learning.
maison -> house, chat -> cat, chien ->?

The French word "chien" means "dog" in English. *What’s the difference between ICL and ZSL?

USC 4

Problem and Experiments

Problem Def: Given data derived from some functions class, can we train a Transformer model to
in-context learn “most” functions from this class?

Experiment 1:
- Standard Transformers can be trained from scratch to in-context learn linear functions.

- Even under some distribution shift, in-context learning is possible.

Experiment 2:
- Transformers can be trained to in-context learn more complex function classes.

Experiment 3:
- What are the key factors for in-context learning?

USC

Experiment Settings

USC

Prompt, In-context Exps and Query

D r : Function distribution. D y : Data distribution.

P :prompt P = (a:l, f(:vl), *rry Lk, f(xk))

Sample a random function f from the class according to D x, create a set of random inputs 1, + -, Tg+1

drawn independently from Dy .

E.g. Sample n Inputs, weights. Each input z; = (21, 22, - -, a:k)(i), weight w; are i.i.d. from isotropic
Gaussian distribution N (0, I;) . Then set f(z;) = wlz;, get prompt sequence (z1, f(z1), -+, Tk, f(zr)) .

USC 7

Transformers Structure

Decoder-only Transformer architecture from GPT-2.

12 layers, 8 attention heads, and a 256 - dimensional embedding space (22.4 M parameters).

Training data

auto-regressive model

Inference
Wiest ™~ N(O’ Id)

T
Wtest'x

(X2,)

Wi, ooy Wy, L NQ, 1,) 0
Al
- N i
i
w. X : i
i (xz(l)’ yz())
>
) |
@ 0 (@)
(x] ’ yl) 'xl
~ Zi=1,...,n

USC

I I I I
y@ x® 0 0

(@)

0 2)

(X1, ¥1)

ICL Pipeline

Sample n training inputs and weights. Each input ¢; = (a:1 ,a:2 . -,ZIZ,(:)), weight w; are i.i.d. from
isotropic Gaussian distribution N (0, I) . Then set f(z;) = w! z; , get prompt sequence

(w17 f(wl)a *rcy Tp, f(wn)) :

For each i, given ($§i)’ f(:c§i)), Cee D1, f(asgll), azg)) , train the Transformer model to auto-

regressively predict f(a:,(;)) :

Then sample input z = (z1, 2, -+, ;), weights wyes; from N(0, I;) . Set f(z) = wl ,x, getin-
context pair (1, f(21),- -+, 21, f(z;j-1), ;) and label f(z;) where x; represents zgyery -

Predict f(z;) using model, evaluate the squared error with f(z;).
Training data Inference
Wi, oW, R N(O, I Wieqr ~ N(O, 1)

Yk
| | | . WiestX

auto-regressive model =

0] (i) fiy .. (i)
X N X) X

USC

Target

P (Prompt prefix): containing i in-context examples and i + 1 query input:

P! = (z1, f(z1), -+ @i, (@), Tig1) -
My : model with param 6 to minimize loss (over all prompt prefixes).
I(-,-) : an appropriately chosen loss function.

k

m1nIE Z (Mg(P?), f(zis1))

=1

USC

10

USC

In-context Learning of Linear Functions

11

Notations

Functions consider function class F = {f|f(z) = wlz,w € R?} with d = 20.
Inputs & weights: &1, - - -, Zk, Tquery ; w from isotropic Gaussian distribution N (0, 1) .

Labels: compute y; = wlx;

Prompt: P = (mla Y1,y Lk Yk wquery)
Baselines: compare the in-context Transformer with other learning baseline algorithms:

1. Least squares estimator (min-norm linear fit to (x;, y;))
2. N-nearest neighbors (averaging the y; values for the n nearest neighbors of z 4eyy)

3. Directly calculate w = avg(y;z;) , use this to compute wTa:query

USC 12

In-context Learning Linear Functions

== Transformer

= | east Squares

=== 3-Nearest Neighbors
= Averaging

squared error

(M(P) w!)2 /d) in-context examples
o query

Evaluate the trained Transformer on in-context learning linear functions

USC

13

What functions the model learn?

The model learn from prompt input P = (z1, w @1, "+, g, w g, Tguery) , ideally output

18

Prefix-conditioned Function: If we fix the prefix given by k in-context examples, we can view the

output of the model as a function fu g, (Zquery) , that approximates wTa:query :

When k < d, the ideal model should approximate (proj,,, (w))*

the projection of w onto the subspace spanned by 1, -+, T .

T guery » Where proj,. . (w) is

USC 14

y : visualize the function fy, 2., (Zquery) -

Prefix-conditioned Function

= ground truth
== ground truth projected

20

10

function value
o

USC

-10 0 10
distance from origin

x :vary query input along a random direction x .
A : the distance of the query input from origin.

Pick random unit vector z , evaluate fu.q,, (Az) asvary A.

= #dims / 2 in-context examples == #dims * 2 in-context examples
— #dims in-context examples

20 20
10 10
-10 -10
-20 =20
-10 0 10 -10 0 10
distance from origin distance from origin

Visualization Along a Random Direction 15

Local Correctness

o 1.0 —

O

o |

8 0.8

S

= 0.6

-

o 04 projy,, (w) = w,when k > d

o

0 0.2 :

g’ = gradient and true w

% 0.0 === gradient and projected w
0 10 20 30 40

in-context examples

The inner product between the gradient and proja,,, (w)

USC 16

Extrapolating Beyond the Training Distribution

USC

17

Notations

Dt}“m : distribution of functions used during training
DtXmm : corresponding distribution of prompt training inputs
D§§3t : distribution of functions sampled during inference

Df{i“ : corresponding distribution of prompt test inputs

Diest ' query is sampled from D%, but potentially dependent on the rest of in-context inputs 1, « - -

query *
. Remember before, we create a set of random inputs 1, -, Z+1 drawni.i.d from Dy .

Two different distribution shift:

test

e Prompt train inputs and prompt test inputs are from different distribution: D747 £ D,y/;

X/F

e Mismatch between in-context examples and the query input: Dfﬁﬁry £ D

USC

18

In-context Learning on Out-of-distribution Prompts

USC

error

o

re

©
=]
o

1.50
1.25
1.00
0.75

0.50

)
0:25

squared error

0.00

1.50
1.25
1.00

0.75

o
U
o

0.25
0.00

0 10 20 30

in-context examples

(a) skewed covariance

0 5 10
in-context examples

(d) orthogonal query

15

40

1.50
1.25
1.00
0.75

0.50
0.25

0.00

0 10 20 30 40
in-context examples

(b) d/2-dimensional subspace

1.50

1.25

1.00 -1
0.75
0.50

0.25

0.00

0 10 20 30 40
in-context examples

(e) query matches in-context example

1.50
1.25
1.00
0.75
0.50
0.25

0.00

1.50
1.25
1.00
0.75
0.50
0.25
0.00

10 20 30
in-context examples

(c) noisy output

=== Transformer
=== |east Squares

= Averaging

40

=== 3-Nearest Neighbors

S S -

10 20 30
in-context examples

(f) different orthants

40

19

Skewed Covariance

1.50
1.25

1.00
Not perfectly robust but

still relatively well 0.75

0.50

squared error

0.25

0.00

0 10 20 30 40
in-context examples

Sample prompt from N(0, X)
USC

Transformer

Least Squares
3-Nearest Neighbors
Averaging

20

Local-dimensional Subspace

1:50

== Transformer
1.25 == | east Squares
=== 3-Nearest Neighbors
1.00 = Averaging
d/2-dimensional Subspace 0.75
0.50
0.25

Encodes a valid orthogonalization 0.00
procedure for these inputs.

0 10 20 30 40
in-context examples

Sample prompt from a random 10 dimensional subspace

USC 21

Noisy Output

wlz; +€,¢ ~ N(0,1)

Train on noiseless data,
evaluate with noisy linear
functions.

USC

1.50
125
1.00
0.75
0.50
0.25
0.00

10 20 30
in-context examples

Sample prompt with noisy

40

Transformer

Least Squares
3-Nearest Neighbors
Averaging

22

PrOmpt Scale == Transformer
Relatively robust for scaling weight, —= Least Squares
not as robust for scaling prompt. - cruarEsl Hekleg

= Averaging
1.0 1.0 sl easss s s scale
-]/3
§ 0.8 0.8 1/2
T 0.6 0.6 -_1
o a— 2
o
© 0.4 0.4 -— 3
o = |Least Squares
% 0.2 0.2
0.0 0.0
0 10 20 30 40 0 10 20 30 40
in-context examples in-context examples
(a) scaled x, Transformer (b) scaled w, Transfomer

Sample prompt with different scale

USC 23

Different Orthants

1.50

1.25 v\A’\'-/\/\/_,\,\/‘/\
Not affected by the mismatch between 1.00 e Transformer
in-context and query inputs, closely 0.75 == | east Squares
match performance of least squares. 0.50 === 3-Nearest Neighbors

USC

== Averaging

0:25 \
0.00
0 10 20 30
in-context examples

Fix the sign of each coordinate to be positive
or negative for all in-context inputs &;

40

24

Orthogonal Query

USC

1.50

1.25

1.00
0.75
0.50

squared error

0.25

0.00

0 5 10 15
in-context examples

Sample the query from the subspace orthogonal to
the subspace spanned by in-context inputs.

Transformer

Least Squares
3-Nearest Neighbors
Averaging

25

Query Matches In-context Example

USC

1.50

1.25

1.00 -‘ ----------------------

0.75

0.50

0.25

0.00

0 10 20 30 40
in-context examples

Choose the query input from one of the in-context
examples inputs uniformly at random

Transformer

Least Squares
3-Nearest Neighbors
Averaging

26

USC

More Complex Function Classes

27

Sparse Linear Functions

1.2

1.0
_ T
f(z) =w' z,weR s

zero out all but s coordinates B

of w uniformly at random 04

squared error

Ty Tauery ~ N(0,1;),w; ~ N(0,1,;) 0.2
0.0

*L1 regularization as a proxy for LO

Transformer
Least Squares
Averaging
Lasso

10 20 30 40
in-context examples

A Transformer trained on prompts generated using

sparse linear functions can in-context learn this class,

USC with error decreasing at a rate similar to Lasso

28

Decision trees

f is a binary tree with depth 4,
the threshold is 0.

Ti, Tquery ~ N(0, 1)

non leaf nodes ~ {1,---,d}
leaf nodes ~ N(0,1)

USC

1.50 Transformer
1:25 3-Nearest Neighbors
Greedy Tree Learning
1.00 XGBoost
0.75 . Greedy Tree Learning
(w/ sign preproc.)
0.50 XGBoost
" (w/ sign preproc.)
0.25 9n prep
0.00
0 20 40 60 80 100

in-context examples

A Transformer trained on prompts generated using random
decision trees can in-context learn this class, which better
performs than greedy tree learning or tree boosting.

29

2-layer Neural Networks

Liy Tquery ™~ N(O,Id),ai ~ N(O,2/r),wi ~ N(O,Id)

Transformer Transformer
Least Squares Least Squares

§ 3-Nearest Neighbors 3-Nearest Neighbors

o 2-layer NN, GD 2-layer NN, GD

°

o

@©

-

o

[%2]

0.0
0 20 40 60 80 100 0 20 40 60 80 100
in-context examples in-context examples

- A Transformer trained on prompts generated using random 2-layer
ReLU neural networks can in-context learn this class.
- The model trained to in-context learn 2-layer neural networks is also
USC able to in-context learn linear functions. 30

Investigating Key Factors for In-context Learning

USC 31

Problem Dimension and Capacity

101 101 101 ; 5
dimensions
100 _____________________ 100 100 == 10
-
@ 10-1 10-1 10-1 e
8 == 40
8 102 10~ 1072
O
0
1073 1073 103
10~ 10~4 10~4
3.4M 7.6M 22.4M 3.4M 7.6M 22.4M 3.4M 7.6M 22.4M
number of parameters number of parameters number of parameters
(a) Standard (b) Different orthants (c) Skewed covariance

Consider models with fewer parameters,
train for different dimensional problems.

USC 32

Loss Progression with Curriculum under Different Dimensions

1.0
0.8

w 0.6

los

0.4
Curriculum Learning: o-

gradually increasing °°
the complexity of the
function class.

1.0

Speed up! 038

» 0.6

los

0.4
0.2

0.0

USC

0

100k
training steps

(a) 10 dimensions

100k 200k 300k 400k 500k
training steps

(d) 40 dimensions

loss

loss

0

0

100k 200k 300k 400k 500k
training steps

(b) 20 dimensions

100k 200k 300k 400k 500k
training steps

(e) 50 dimensions

loss

0 100k 200k 300k 400k 500k
training steps

(c) 30 dimensions

== \vith curriculum
== \ithout curriculum

33

In-context Learning with Curriculum and Distribution Shift

1.2 1.2 1.2

= Transformer
1.0 -f= == Transformer, no curriculum
- | east Squares

0.8
0.6
0.4
0.2
0.0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
in-context examples in-context examples in-context examples
(a) standard (b) different orthants (c) skewed

No major qualitative difference if we use curriculum or not

USC 34

Number of Distinct Prompts or Functions Seen During Training

1.0 oo o e o e e e e e #in-context examples
-g= 10
o o 0.6 == 30
o i . —e— 40
S S 0.4
O O
0 0
0.2
0.0 — ————
1K 10K 100K 1M 10M32M 100 1K 10K 100K 32M
#prompts used for training #weight vectors used for training
The amount of training data required np = 100k, n,, = 1k
is relatively small. n, = 1M,n, = 10k

USC 35

USC

Conclusions

36

Conclusions

Transformer models trained from scratch can in-context learn the class of linear functions, with
performance comparable to the optimal least squares estimator, even under distribution shifts.

In-context learning can performs with some more complex functions: sparse linear functions,
decision trees, and two-layer neural networks.

Capacity of model, number of in-context learning samples, and prompts / weight vectors used for
training help perform better in-context learning. Curriculum can speed up the training process.

Transformers can encode complex learning algorithms that utilize in-context examples in a
far-from-trivial manner. In fact, this 1s the case for standard Transformer architectures trained with
standard optimization procedures.The extent to which such non-trivial in-context learning behavior
exists in LLMs is still open.

USC 37

Thanks for Listening

CSCI-699: Computational Perspectives on the Frontiers of Machine Learning
What Can Transformers Learn In-Context? A Case Study of Simple Function Classes
Presenter: Jingmin Wei

USC

38

