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In-context Learning

ICL for sentiment analysis. Inference with prompts, without

parameter updates.
Delicious food -> 1, The food is awful -> 0, Terrible dishes -> 0, Good meal -> ?

"Good meal" can be considered as 1in a sentiment analysis context, as it is generally a

positive statement about the food.

English translations of French words after
being prompted on a few such translations. Many LLMs exhibit ability to perform

in-context learning.
maison -> house, chat -> cat, chien ->?

The French word "chien" means "dog" in English. *What’s the difference between ICL and ZSL?
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Problem and Experiments

Problem Def: Given data derived from some functions class, can we train a Transformer model to
in-context learn “most” functions from this class?

Experiment 1:
- Standard Transformers can be trained from scratch to in-context learn linear functions.

- Even under some distribution shift, in-context learning is possible.

Experiment 2:
- Transformers can be trained to in-context learn more complex function classes.

Experiment 3:
- What are the key factors for in-context learning?
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Experiment Settings

USC



Prompt, In-context Exps and Query

D r : Function distribution. D y : Data distribution.

P :prompt P = (a:l, f(:vl), *rry Lk, f(xk))

Sample a random function f from the class according to D x, create a set of random inputs 1, + -, Tg+1

drawn independently from Dy .

E.g. Sample n Inputs, weights. Each input z; = (21, 22, - -, a:k)(i), weight w; are i.i.d. from isotropic
Gaussian distribution N (0, I;) . Then set f(z;) = wlz;, get prompt sequence (z1, f(z1), -+, Tk, f(zr)) .
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Transformers Structure

Decoder-only Transformer architecture from GPT-2.

12 layers, 8 attention heads, and a 256 - dimensional embedding space (22.4 M parameters).

Training data

auto-regressive model

Inference
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ICL Pipeline

Sample n training inputs and weights. Each input ¢; = (a:1 ,a:2 . -,ZIZ,(:)), weight w; are i.i.d. from
isotropic Gaussian distribution N (0, I) . Then set f(z;) = w! z; , get prompt sequence

(w17 f(wl)a *rcy Tp, f(wn)) :

For each i, given ($§i)’ f(:c§i)), Cee D1, f(asgll), azg)) , train the Transformer model to auto-

regressively predict f(a:,(;)) :

Then sample input z = (z1, 2, -+, ;), weights wyes; from N(0, I;) . Set f(z) = wl ,x, getin-
context pair (1, f(21),- -+, 21, f(z;j-1), ;) and label f(z;) where x; represents zgyery -

Predict f(z;) using model, evaluate the squared error with f(z;).
Training data Inference
Wi, oW, R N(O, I Wieqr ~ N(O, 1)

Yk
| | | . WiestX

auto-regressive model =

0] (i) fiy .. (i)
X N X ) X
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Target

P (Prompt prefix): containing i in-context examples and i + 1 query input:

P! = (z1, f(z1), -+ @i, (@), Tig1) -
My : model with param 6 to minimize loss (over all prompt prefixes).
I(-,-) : an appropriately chosen loss function.

k

m1nIE Z (Mg(P?), f(zis1))

=1
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In-context Learning of Linear Functions
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Notations

Functions consider function class F = {f|f(z) = wlz,w € R?} with d = 20.
Inputs & weights: &1, - - -, Zk, Tquery ; w from isotropic Gaussian distribution N (0, 1) .

Labels: compute y; = wlx;

Prompt: P = (mla Y1,y Lk Yk wquery)
Baselines: compare the in-context Transformer with other learning baseline algorithms:

1. Least squares estimator (min-norm linear fit to (x;, y;))
2. N-nearest neighbors (averaging the y; values for the n nearest neighbors of z 4eyy)

3. Directly calculate w = avg(y;z;) , use this to compute wTa:query
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In-context Learning Linear Functions

== Transformer

= | east Squares

=== 3-Nearest Neighbors
= Averaging

squared error

(M(P) w! )2 /d) in-context examples
o query

Evaluate the trained Transformer on in-context learning linear functions

USC
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What functions the model learn?

The model learn from prompt input P = (z1, w @1, "+, g, w g, Tguery) , ideally output

18

Prefix-conditioned Function: If we fix the prefix given by k in-context examples, we can view the

output of the model as a function fu g, (Zquery) , that approximates wTa:query :

When k < d, the ideal model should approximate (proj,,, (w))*

the projection of w onto the subspace spanned by 1, -+, T .

T guery » Where proj,. . (w) is
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y : visualize the function fy, 2., (Zquery) -

Prefix-conditioned Function

= ground truth
== ground truth projected

20

10

function value
o
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-10 0 10
distance from origin

x :vary query input along a random direction x .
A : the distance of the query input from origin.

Pick random unit vector z , evaluate fu.q,, (Az) asvary A.

= #dims / 2 in-context examples == #dims * 2 in-context examples
— #dims in-context examples

20 20
10 10
-10 -10
-20 =20
-10 0 10 -10 0 10
distance from origin distance from origin

Visualization Along a Random Direction 15



Local Correctness

o 1.0 —

O

o |

8 0.8

S

= 0.6

-

o 04 projy,, (w) = w,when k > d

o

0 0.2 :

g’ = gradient and true w

% 0.0 === gradient and projected w
0 10 20 30 40

in-context examples

The inner product between the gradient and proja,,, (w)
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Extrapolating Beyond the Training Distribution

USC
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Notations

Dt}“m : distribution of functions used during training
DtXmm : corresponding distribution of prompt training inputs
D§§3t : distribution of functions sampled during inference

Df{i“ : corresponding distribution of prompt test inputs

Diest ' query is sampled from D%, but potentially dependent on the rest of in-context inputs 1, « - -

query *
. Remember before, we create a set of random inputs 1, -, Z+1 drawni.i.d from Dy .

Two different distribution shift:

test

e Prompt train inputs and prompt test inputs are from different distribution: D747 £ D,y/;

X/F

e Mismatch between in-context examples and the query input: Dfﬁﬁry £ D

USC

18



In-context Learning on Out-of-distribution Prompts
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(a) skewed covariance
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Skewed Covariance

1.50
1.25

1.00
Not perfectly robust but

still relatively well 0.75

0.50

squared error

0.25

0.00

0 10 20 30 40
in-context examples

Sample prompt from N(0, X)
USC

Transformer

Least Squares
3-Nearest Neighbors
Averaging
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Local-dimensional Subspace

1:50

== Transformer
1.25 == | east Squares
=== 3-Nearest Neighbors
1.00 = Averaging
d/2-dimensional Subspace 0.75
0.50
0.25

Encodes a valid orthogonalization 0.00
procedure for these inputs.

0 10 20 30 40
in-context examples

Sample prompt from a random 10 dimensional subspace
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Noisy Output

wlz; +€,¢ ~ N(0,1)

Train on noiseless data,
evaluate with noisy linear
functions.

USC
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in-context examples

Sample prompt with noisy

40

Transformer

Least Squares
3-Nearest Neighbors
Averaging
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PrOmpt Scale == Transformer
Relatively robust for scaling weight, —= Least Squares
not as robust for scaling prompt. - cruarEsl Hekleg

= Averaging
1.0 1.0 sl easss s s scale
- ]/3
§ 0.8 0.8 1/2
T 0.6 0.6 -_1
o a— 2
o
© 0.4 0.4 -— 3
o = |Least Squares
% 0.2 0.2
0.0 0.0
0 10 20 30 40 0 10 20 30 40
in-context examples in-context examples
(a) scaled x, Transformer (b) scaled w, Transfomer

Sample prompt with different scale
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Different Orthants

1.50

1.25 v\A’\'-/\/\/\_,\,\/‘/\
Not affected by the mismatch between 1.00 e Transformer
in-context and query inputs, closely 0.75 == | east Squares
match performance of least squares. 0.50 === 3-Nearest Neighbors
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== Averaging

0:25 \
0.00
0 10 20 30
in-context examples

Fix the sign of each coordinate to be positive
or negative for all in-context inputs &;

40
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Orthogonal Query

USC

1.50

1.25

1.00
0.75
0.50

squared error

0.25

0.00

0 5 10 15
in-context examples

Sample the query from the subspace orthogonal to
the subspace spanned by in-context inputs.

Transformer

Least Squares
3-Nearest Neighbors
Averaging
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Query Matches In-context Example

USC
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1.25

1.00 -‘ ----------------------

0.75

0.50

0.25

0.00

0 10 20 30 40
in-context examples

Choose the query input from one of the in-context
examples inputs uniformly at random

Transformer

Least Squares
3-Nearest Neighbors
Averaging

26



USC

More Complex Function Classes
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Sparse Linear Functions

1.2

1.0
_ T
f(z) =w' z,weR s

zero out all but s coordinates B

of w uniformly at random 04

squared error

Ty Tauery ~ N(0,1;),w; ~ N(0,1,;) 0.2
0.0

*L1 regularization as a proxy for LO

Transformer
Least Squares
Averaging
Lasso

10 20 30 40
in-context examples

A Transformer trained on prompts generated using

sparse linear functions can in-context learn this class,

USC with error decreasing at a rate similar to Lasso
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Decision trees

f is a binary tree with depth 4,
the threshold is 0.

Ti, Tquery ~ N(0, 1)

non leaf nodes ~ {1,---,d}
leaf nodes ~ N(0,1)

USC

1.50 Transformer
1:25 3-Nearest Neighbors
Greedy Tree Learning
1.00 XGBoost
0.75 . Greedy Tree Learning
(w/ sign preproc.)
0.50 XGBoost
" (w/ sign preproc.)
0.25 9n prep
0.00
0 20 40 60 80 100

in-context examples

A Transformer trained on prompts generated using random
decision trees can in-context learn this class, which better
performs than greedy tree learning or tree boosting.
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2-layer Neural Networks

Liy Tquery ™~ N(O,Id),ai ~ N(O,2/r),wi ~ N(O,Id)

Transformer Transformer
Least Squares Least Squares

§ 3-Nearest Neighbors 3-Nearest Neighbors

o 2-layer NN, GD 2-layer NN, GD

°

o

@©

-

o

[%2]

0.0
0 20 40 60 80 100 0 20 40 60 80 100
in-context examples in-context examples

- A Transformer trained on prompts generated using random 2-layer
ReLU neural networks can in-context learn this class.
- The model trained to in-context learn 2-layer neural networks is also
USC able to in-context learn linear functions. 30



Investigating Key Factors for In-context Learning
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Problem Dimension and Capacity

101 101 101 ; 5
dimensions
100 _____________________ 100 100 == 10
-
@ 10-1 10-1 10-1 e
8 == 40
8 102 10~ 1072
O
0
1073 1073 103
10~ 10~4 10~4
3.4M 7.6M 22.4M 3.4M 7.6M 22.4M 3.4M 7.6M 22.4M
number of parameters number of parameters number of parameters
(a) Standard (b) Different orthants (c) Skewed covariance

Consider models with fewer parameters,
train for different dimensional problems.
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Loss Progression with Curriculum under Different Dimensions

1.0
0.8

w 0.6

los

0.4
Curriculum Learning: o-

gradually increasing  °°
the complexity of the
function class.

1.0

Speed up! 038

» 0.6

los

0.4
0.2

0.0
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0

100k
training steps

(a) 10 dimensions

100k 200k 300k 400k 500k
training steps

(d) 40 dimensions

loss

loss

0

0

100k 200k 300k 400k 500k
training steps

(b) 20 dimensions

100k 200k 300k 400k 500k
training steps

(e) 50 dimensions

loss

0 100k 200k 300k 400k 500k
training steps

(c) 30 dimensions

== \vith curriculum
== \ithout curriculum
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In-context Learning with Curriculum and Distribution Shift

1.2 1.2 1.2

= Transformer
1.0 -f= == Transformer, no curriculum
- | east Squares

0.8
0.6
0.4
0.2
0.0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
in-context examples in-context examples in-context examples
(a) standard (b) different orthants (c) skewed

No major qualitative difference if we use curriculum or not
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Number of Distinct Prompts or Functions Seen During Training

1.0 oo o e o e e e e e #in-context examples
-g= 10
o o 0.6 == 30
o i . —e— 40
S S 0.4
O O
0 0
0.2
0.0 — ————
1K 10K 100K 1M 10M32M 100 1K 10K 100K 32M
#prompts used for training #weight vectors used for training
The amount of training data required np = 100k, n,, = 1k
is relatively small. n, = 1M,n, = 10k
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Conclusions

Transformer models trained from scratch can in-context learn the class of linear functions, with
performance comparable to the optimal least squares estimator, even under distribution shifts.

In-context learning can performs with some more complex functions: sparse linear functions,
decision trees, and two-layer neural networks.

Capacity of model, number of in-context learning samples, and prompts / weight vectors used for
training help perform better in-context learning. Curriculum can speed up the training process.

Transformers can encode complex learning algorithms that utilize in-context examples in a
far-from-trivial manner. In fact, this 1s the case for standard Transformer architectures trained with
standard optimization procedures.The extent to which such non-trivial in-context learning behavior
exists in LLMs is still open.
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Thanks for Listening
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