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In-context Learning
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In-context Learning
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ICL for sentiment analysis.

English translations of French words after 
being prompted on a few such translations.

*What’s the difference between ICL and ZSL?

Many LLMs exhibit ability to perform 
in-context learning.

Inference with prompts, without 
parameter updates.



Problem Def: Given data derived from some functions class, can we train a Transformer model to 
in-context learn “most” functions from this class?

Experiment 1: 
- Standard Transformers can be trained from scratch to in-context learn linear functions.
- Even under some distribution shift, in-context learning is possible.

Experiment 2: 
- Transformers can be trained to in-context learn more complex function classes.

Experiment 3:
- What are the key factors for in-context learning?

Problem and Experiments
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Experiment Settings
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Prompt, In-context Exps and Query
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Transformers Structure
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Decoder-only Transformer architecture from GPT-2.

12 layers, 8 attention heads, and a 256 - dimensional embedding space (22.4 M parameters).



ICL Pipeline
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Target
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In-context Learning of Linear Functions
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Notations
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In-context Learning Linear Functions
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Evaluate the trained Transformer on in-context learning linear functions



What functions the model learn?
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Prefix-conditioned Function

15Visualization Along a Random Direction



Local Correctness
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The inner product between the gradient and 



Extrapolating Beyond the Training Distribution
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Notations
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In-context Learning on Out-of-distribution Prompts
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Skewed Covariance
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Sample prompt from

Not perfectly robust but 
still relatively well



Local-dimensional Subspace
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d/2-dimensional Subspace

Sample prompt from a random 10 dimensional subspace

Encodes a valid orthogonalization 
procedure for these inputs.



Noisy Output
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Sample prompt with noisy

Train on noiseless data, 
evaluate with noisy linear 
functions.



Prompt Scale
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Sample prompt with different scale

Relatively robust for scaling weight, 
not as robust for scaling prompt.



Different Orthants
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Fix the sign of each coordinate to be positive 
or negative for all in-context inputs 

Not affected by the mismatch between 
in-context and query inputs, closely 
match performance of least squares.



Orthogonal Query
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Sample the query from the subspace orthogonal to 
the subspace spanned by in-context inputs.



Query Matches In-context Example
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Choose the query input from one of the in-context 
examples inputs uniformly at random



More Complex Function Classes
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Sparse Linear Functions
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A Transformer trained on prompts generated using 
sparse linear functions can in-context learn this class, 
with error decreasing at a rate similar to Lasso

zero out all but s coordinates 
of w uniformly at random

*L1 regularization as a proxy for L0



Decision trees
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A Transformer trained on prompts generated using random 
decision trees can in-context learn this class, which better 
performs than greedy tree learning or tree boosting.

   is a binary tree with depth 4, 
the threshold is 0.



2-layer Neural Networks
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- A Transformer trained on prompts generated using random 2-layer 
ReLU neural networks can in-context learn this class.

- The model trained to in-context learn 2-layer neural networks is also 
able to in-context learn linear functions.



Investigating Key Factors for In-context Learning
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Problem Dimension and Capacity
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Consider models with fewer parameters, 
train for different dimensional problems.



Loss Progression with Curriculum under Different Dimensions
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Curriculum Learning: 
gradually increasing 
the complexity of the 
function class.

Speed up!



In-context Learning with Curriculum and Distribution Shift
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No major qualitative difference if we use curriculum or not



Number of Distinct Prompts or Functions Seen During Training
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The amount of training data required 
is relatively small.



Conclusions
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Conclusions
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Transformer models trained from scratch can in-context learn the class of linear functions, with 
performance comparable to the optimal least squares estimator, even under distribution shifts. 

In-context learning can performs with some more complex functions: sparse linear functions, 
decision trees, and two-layer neural networks.

Capacity of model, number of in-context learning samples, and prompts / weight vectors used for 
training help perform better in-context learning. Curriculum can speed up the training process.

Transformers can encode complex learning algorithms that utilize in-context examples in a 
far-from-trivial manner. In fact, this is the case for standard Transformer architectures trained with 
standard optimization procedures.The extent to which such non-trivial in-context learning behavior 
exists in LLMs is still open.



Thanks for Listening
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